CHROM. 4990

Gelchromatographie strukturisomerer Peptide an Sephadex G-10

Über die "reversible Adsorption" von aromatischen und heterocyclischen Verbindungen an Dextrangelen in Abhängigkeit von der Art der Gelmatrix und des Elutionsmittels ist von zahlreichen Arbeitskreisen berichtet worden¹⁻⁴. In einer vorangegangenen Mitteilung beschrieben wir das unterschiedliche Verhalten strukturisomerer Phenylalaninpeptide bei der Gelchromatographie an Sephadex G-15 (Lit. 5). Wir haben diese Untersuchungen an Sephadex G-10 fortgesetzt.

M ethodik

Für die Versuche wurde ein Chromatographierohr mit den Abmessungen 105×1.2 cm bis zu einer Höhe von 102 cm mit in 0.2 M Essigsäure gequollenem Sephadex G-10 (Lot No. 8986) gefüllt. Die Versuche wurden mit folgenden Elutionsmitteln in der angegebenen Reihenfolge durchgeführt: (A) 0.2 M Essigsäure; (B) 0.2 M Essigsäure mit 0.5 M NaCl; (C) 0.2 M Essigsäure mit 0.5 M NaCl; (D) 0.2 M Essigsäure mit 0.5 M NaCl; (D) 0.0 M NaOH; (F) 0.0 M NaOH mit 0.5 M NaCl; (G) 0.2 M Essigsäure, nachdem die Säule mit dest. Wasser neutral gewaschen und anschliessend mit 0.5 M Pyridinlösung behandelt worden war. Das verbleibende Pyridin wurde dann mit 0.2 M Essigsäure von der Säule eluiert. Es wurden jeweils 0.5

$$K_{av} = \frac{V_c - V_0}{V_t - V_0}$$

Das mit der entsprechenden Mengen Wasser ausgemessene Gesamtvolumen V_t betrug 110 ml. Das äussere Volumen V_0 wurde mittels Rinderserumalbumin zu 41 ml bestimmt. Die für die Versuche verwendeten Peptide wurden nach bekannten Methoden synthetisiert und sind aus der Tabelle I zu ersehen.

Diskussion

Die strukturisomeren Phenylalanin- und Leucinpeptide zeigten in o.2 M Essigsäure unterschiedliche Affinitäten zur Gelphase, wobei die Peptide mit N-terminalem Glycin stärker adsorbiert wurden als die Peptide mit C-terminalem Glycin. Durch Salzzugabe zum Elutionsmittel (System B und C) wurden diese Affinitätsunterschiede besonders deutlich. Dabei wurden die Peptide Gly-Phe, Phe-Gly, Gly-Gly-Phe, Gly-Ala, Ala-Gly, Gly-Leu, Leu-Gly und Gly-Pro später von der Säule eluiert als die entsprechenden Aminosäuren Glycin, Phenylalanin, Alanin, Leucin und Prolin. Diesen Effekt beobachteten wir schon bei unseren Untersuchungen an Sephadex G-15 (Lit. 5). Der Versuch, eine "aromatische Sättigung" des Gels durch Phenolzusatz

TABELLE I

Kav-werte von aminosäuren und peptiden an Sephadex G-10

Säulenparameter, 102 \times 1.2 cm; Gesamtvolumen (V_t), 110 ml; Ausschlussvolumen (V_0), 41 ml. Elutionsmittel: (A) 0.2 M Essigsäure; (B) 0.2 M Essigsäure mit 0.5 M NaCl; (C) 0.2 M Essigsäure mit 1.0 M NaCl; (D) 0.2 M Essigsäure mit 0.1 M Phenol; (E) 0.01 M NaOH; (F) 0.01 M NaOH mit 0.5 M NaCl; (G) 0.2 M Essigsäure, nachdem die Säule mit 1 M Pyridin gewaschen wurde.

:	Elutionsmittel						
	A	В	C	D	E	F	G
Glycin	0.30	0.32	0.36	0.28	0.17	0.24	0.25
Phenylalanin	0.54	0.76	0.98	0.54	0.26	0.53	0.46
Gly-Phe	0.55	1.10	1.43	0.55	0.19	0.43	0.33
Phe-Gly	0.43	0.82	1.03	0.42	0.22	0.47	0.28
Gly-Gly-Phe	0.49	0.89	1.10	0.48	0.15	0.33	0.27
Phe-Gly-Gly	0.29	0.36	0.39	0.26	0.12	0.25	0.25
Alanin	0.27	0.33	0.34	0.25	0.15	0.23	0.23
Gly-Ala	0.25	0.38	0.42	0.24	0.11	0.22	0.17
Ala-Gly	0.25	0.36	0.39	0.23	0.09	0.22	0.15
Leucin	0.29	0.36	0.43	0.29	0.15	0.28	0.25
Gly-Leu	0.31	0.57	0.65	0.31	0.11	0.23	0.18
Leu-Gly	0.25	0.37	0.45	0.26	0.11	0.26	0.17
Prolin	0.24	0.27	0.30	0.25	0.16	0.26	0.18
Gly-Pro	0.23	0.35	0.37	0.24	0.09	0.21	0.17
Pro-Gly	0.23	0.31	0.35	0.23	0.11	0.23	0.18

zum Elutionsmittel zu erreichen, scheiterte ebenso wie der Versuch dieses mittels Na-salicylat zu erzielen⁸.

Erwartungsgemäss wurden die Aminosäuren und Peptide in o.o. M NaOH von der Gelphase ausgeschlossen. Durch Salzzugabe wurden die Verbindungen jedoch wieder unterschiedlich stark adsorbiert. Dabei fiel auf, dass Phe-Gly stärker als Gly-Phe retardiert wurde. Nach den Versuchen mit den Elutionsmitteln A-F überprüften wir die Eigenschaften der Säule. Diese hatten sich offensichtlich nicht geändert, denn für alle Aminosäuren und Peptide wurden in 0.2 M Essigsäure dieselben K_{av} -Werte gefunden wie zu Beginn der Versuchsreihen. Nach dem Waschen der Säule mit Pyridinlösung jedoch wurden alle Verbindungen mit o.2 M Essigsäure deutlich früher von der Säule eluiert als zuvor. Diese von Eaker und Porath gemachte Beobachtung können wir für Sephadex G-10 (Lot No. 8986) bestätigen. Dagegen konnten wir diesen Effekt bei unseren Arbeiten mit Sephadex G-15 (Lot No. 9190) nicht beobachten⁵.

Staatsliches Institut für Immunpräparate und Nährmedien, 112 Berlin-Weissensee (D.D.R.)

P. ZISKA

- I B. GELOTTE, J. Chromatog., 3 (1960) 330.
- 2 J.-C. Janson, J. Chromatog., 28 (1967) 12. 3 R. K. Bretthauer und A. M. Golichowski, Biochim. Biophys. Acta, 155 (1967) 549.
- 4 J. Porath, Nature, 218 (1968) 834.
- 5 P. ZISKA, J. Chromatog., 48 (1970) 544.
- 6 D. EAKER UND J. PORATH, Separation Sci., 2 (1967) 507.
- T. C. LAURENT UND J. KILLANDER, J. Chromatog., 14 (1964) 317.
- 8 J. Porath, Biochim. Biophys. Acta, 39 (1960) 193.

Eingegangen am 11. August 1970